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Abstract

The concept of the soliton has been changing over the last decade or two.
It changed from being a nonlinear mode of an integrable system to
being described as a Hamiltonian soliton, and moreover, a dissipative
soliton. The latter notion includes ultra-short pulses generated by laser
systems, spatial solitons in wide aperture lasers, dispersion managed
solitons in all-optical systems with gain and loss and many other similar
applications. This talk is aimed to reflect this new items in the general
list of solitons and to discuss their common features and differences
from the traditional concept of solitons.




A Rough Classification of Nonlinear Systems
with an Infinite Number of Degrees of freedom
admitting soliton solutions

Dissipative Systems

Hamiltonian systems

Integrable
systems

Hamiltonian Systems
can be considered as
a subclass of
dissipative ones,
while integrable
systems can be
viewed as a subclass
of Hamiltonian ones.




A classification of a dynamical
system with one degree of freedom
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Qualitative difference between the
soliton solutions 1n Hamiltonian and
dissipative systems.

Hamiltonian systems:

Family of
soliton solutions

In Hamiltonian systems,
soliton solutions are the result
of a single balance, and
comprise one- or few-

Diffraction
or dispersion

N\

Nonlinearity parameter families.
Dissipative systems:
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Qualitative description of
solitons 1n dissipative systems.
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The soliton is a result of a dynamical The sun as an example of an object
process of energy exchange with the in dynamic equilibrium.
environment and between its own parts. Gravitational forces balance the
The areas of consumption and internal pressure and the

dissipation of energy are both frequency  generated energy is balanced by
and intensity dependent. the emitted radiation.



Composite solitons 1n passively
mode-locked lasers and the complex
quintic Swift-Hohenberg equation

*The complex quintic Swift-Hohenberg equation
(CSHE) 1s a model for describing pulse generation in
mode-locked lasers with fast saturable absorbers and a
complicated spectral response.

*Using numerical simulations, we study single and
two-soliton solutions of the (1+1)-dimensional
complex quintic Swift-Hohenberg equations. We have
found that several types of stationary and moving
composite solitons of this equation are generally stable.




The complex quintic Swift-
Hohenberg equation (CSHE)

Higher order
Dispersion Nonlinearity Nonlinearity
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Energy balance equation
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The energy Q= | y? dx is not conserved
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Spectral filtering in the two models

of a laser
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Spectral filtering T(®) = exp(0-B ® *-y, ® %) in the two models:
(a) CGLE and (b) CSHE. Parameters are: (a) 3 = 0.6, 7y, =0,
and 0 =- 0.1, and (b) p =- 0.3, 7,=0.05 and 0 = - 0.5.
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Convergence of a sech-type 1nitial
condition to a CP soliton.

Parameters of
the simulation

are.
B=-0.3,
@5 = @.Qmw
e = 1.6,
v =0,
=-0.1
and o = - (.5.
Here Q=38.4.




Convergence of a sech-type 1nitial
condition to an NCP soliton.

The equation
parameters of
the simulation
are the same as
in the previous

slide.
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Here Q=74.0.
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Spectra of the two pulses (CP and NCP)
and spectral filtering of the CSHE.

Spectra of the CP
(red line) and
NCP (blue line).
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shown by the
green line.
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Various soliton profiles,
symmetric and asymmetric
(moving solitons).
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Various soliton branches in the
Q - € plane 1n the case of (a) CSH

equation and (b) CGL equation
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Type I and type II double pulse
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The intensity and phase profiles.

The spectrum of the double pulse
solutions with /2 phase difference.
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Energy versus € for three types of
pulse pairs.

pairs of pulses 7 |
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The type I double pulse
solution with © phase

difference between the
solitons (blue line).

The type II (green line).
The double pulse with a

7t /2 phase difference
between them (red line).



Periodic evolution of the double
pulse with 1 phase difference.

Evolution of Energy
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Evolution of the spectrum of the two-
pulse solution with 1 phase difference

between the pulses. Periodicity.
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Importance: Stable High Density
Information Transmission

Research objective: Increasing Means: Controlled Pulse-pulse interaction
the Capacity of High Density in dispersion managed fiber system when
Optical Transmission Lines nonlinear amplifiers are added

Scientific Barriers: The pulses tend to merge or change shape before arriving
to the receiver. This problem for dispersion managed fiber links was not solved.
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Parameters of the optical Interaction plane shows the existence of
transmission line (dispersion map) two stable foci or centers.

used in the simulations. Main result:Nearest pulses do not merge !



High stability All-Optical
information transmission

Optical Transmission Link with self-adjustment
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Saturable absorbers Significantly Improve Performance of an Optical Link.

This system brings to a standard the pulse
shapes and distances between the pulses.



Advantages of using nonlinear amplifiers in
Dispersion - Managed Optical Transmission Systems.

Dispersion-managed optical 157
transmission systems may
greatly improve the

transmission capacity of fiber
links.

Intensity
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Periodic variations of dispersion
bring the pulse back almost — N
to its original shape after : \— 8
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Conclusions

The system modelled has a larger number of soliton
solutions than a system modelled by the complex CGLE due
to the more complicated spectral response intrinsic to the
CSHE model. This is a hint for facilitating an experimental
observation of composite pulses.

CSHE model admits a greater variety of soliton bound
states than the CGLE model: There are three different types
of stable soliton bound states with 7 or 7t /2 phase difference
between the solitons. These results suggest the design for an
optical pulse train generator with controllable phase shift and
pulse separation between the pulses. This would be an ideal
source for all-optical high-bit rate transmission lines.



Observation of Soliton Explosions
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Experimental Setup
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Steady state spectrum
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Experiment: Solitary Explosion
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Transition from regular pulse
generation to explosions
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Range of parameters

Explosions a _mu:. 125,
exist in an [ p=-0.1
amazingly PLos=01
wide range of

parameters W

Red dot corresponds -
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